| | Reference | Study Objective | Intervention | Methods | Results | |---|--|---|---|--|---| | 1 | AbuMweiss, Ames 2010
Canada, Wpg, U Manitoba
Meta Analysis | Meta analysis of trials of
barley beta-glucan on lipid
lowering capacity | MetaAnalysis of results of 11 randomized crossover clinical trials of barley β -glucan on blood lipids – mean BG dose = 5 g/day | Statistical Analysis of the
results for Total, LDL and
HDL Cholesterol, and for
Triglycerides | BG - Total Chol ↓ 0.30
mmol/l, LDL ↓ 0.27 mmol/l,
HDL = NS, TRG = NS
compared to control | | 2 | Vitaglione
2009 U Napoli Italy,
14 Adult M/F | Effect of beta-glucan on energy intake and release of peptide YY and plasma ghrelin | Diet containing breads with or without 3 g of beta-glucan from Glucagel | Randomized crossover,
placebo controlled, subjects
with BMI mean = 22.9 | 19% ↓ in energy intake 23%
↓ in Ghrelin 16% ↑ in Peptide
YY ↓ glucose response | | 3 | Vitaglione
2010 U Napoli Italy,
20 Adolescent M/F | Effect of beta-glucan on energy intake, appetite, satiety hormones | Snack biscuit with (5.2%) or
without barley beta-glucan
(Glucagel & Barley Balance)
served midmorning | Randomized.placebo
controlled crossover trials.
Subjects were adolescent M/F | ↓ AUC Appetite w BG Energy intake F only ↑ AUC Satiety w BG | | 4 | Thondre, Henry 2010 Oxford B UK In vitro digestion model | Effect of beta-glucan (Barley
Balance) on particle
breakdown in starch digestion | In vitro digestion model
simulation of starch digestion
with and without beta-glucan
in chapatis | Simulation model of human digestive system – chapatis with 0%, 4% & 8% BG | Beta-glucan slowed the rate of particle breakdown and digestion of starch | | 5 | Smith, Slavin, Fulcher 2008
U Minnesota US
90 Adult M/F | Physiological Effects of two different MW β -glucans on blood lipids and weight control | Diet containing beverage mix
with 6 grams daily of a high or
low molecular weight barley
BG extract in 6 week trial | Randomized double blind parallel groups in diet with HMW or LMW barley β -glucan | LMW - ↓ LDL ↓CRP LMW - ↓ Weight HMW - ↓ Weight | | 6 | Aurora
2009 Imperial College UK,
Mice | Prebiotic, Probiotic &
Symbiotic Feeding and Obesity
in Mice | Diets with Control, Prebiotic
beta-glucan (BG), and
symbiotic BG + yogurt (Fibar) | Randomized, placebo controlled 21 day trial with 0,1,2,3 and 4 % BG | ↑ Microbial, ↓ pH,
↑ gut hormones,
↑ satiety with BG ↑ | | | Reference | Study Objective | Intervention | Methods | Results | |----|--|--|---|---|--| | 7 | Thondre, Henry
2009 OxfordB UK
8 Adult M/F | Reduction of glycemic index and glucose response to beta-glucan | Diet with 0,2,6 & 8% beat-glucan in finished food – whole wheat chapattis, with glucose control (Fibar) | Randomized, single blind, placebo controlled, healthy subjects with BMI <30 | ↓ 43% in GI 4g
↓ 47% in GI 8g
↓ 71% in GI compared to
glucose control | | 8 | Shimizu
2007 Sapporo Japan
44 Adult M | Effect of beta-glucan on serum cholesterol and visceral fat in men | Diet with rice (control)
and 50-50 rice & pearled
barley high in BG (Fibar) | Randomized, double
blind, placebo control for
12 week period | ↓ 8.2%, TC
↓ 7.4% LDL
↓ Visceral fat ↓ BMI | | 9 | Wilson
2004 U Mass US
30 Male Hamsters | Effect of High MW &
Low MW barley beta-
glucan on Total & LDL
Cholesterol | Diet containing a High
MW BBG or a Low MW
BBG at 8g/100g over 6
weeks – TC, LDL, HDL,
TG | Randomized, double
blind, placebo controlled
trial for 6 weeks + 2 week
lead in | ↓ LMW 36%TC,
50%LDL ↓ HMW
32%TC, 43%LDL No
difference between LMW
& HMW | | 10 | Pins
2000 U Minnesota U.S.
60 Adult M/F | Reduction of cholesterol and increased satiety | Diet with 4 muffins/day,
wheat bran control, barley
enriched BG and barley
bran | Randomized, stratified
double blind, 6 week
AHA Step 1 Diet & 4
week trial phase | Beta glucan group had
↓ 7.8% TC ↓ 8.22%
LDL ↑ satiety ↓
weight | | 11 | Jenkins
2005 – U Toronto,
Canada 34
Adult M/F | Comparing diet cholesterol lowering foods & statins | Diets – low fat control
diet, low fat diet + 20 mg
lovastatin, combination
diet with fibers, sterols,
nuts & vegetables | Randomized, placebo
controlled, double blind,
crossover trial, 12 weeks | \downarrow 8.5% LDL (low fat diet only), \downarrow 33.3% (diet + statin) \downarrow 29.6% \downarrow (combo diet) | | 12 | Pascoe
2008 U Minnesota US
Immune cells | Study effect of cereal cellwall material (BG) on the immune system | Human immune cells in culture exposed to cereal cellwall polysaccharides | In vitro, human macro-
phage cells exposed to
highly purified BG | TNF α stimulation at 5 ug/ml = .35TNF/cell 10 ug/ml = .58TNF/cell | | 13 | Sealey
2008 U Idaho/USDA
U.S. Rainbow
trout | Evaluate efficacy of barley BG on immune response in trout | Control diet (wheat), 3
barley diets (L, M, H BG)
+ Control with yeast BG
Alamo (Barley Balance) | Randomized, placebo
controlled trial, 9 week
viral challenge group | Barley BG led to
increased disease
resistance – same as yeast
BG | | | Reference | Study Objective | Intervention | Methods | Results | |----|---|---|--|--|---| | 14 | Causey
1998 U Minnesota U.S.
Macrophage Cells | Evaluate stimulatory effects of cereal BG on human macrophages | Human macrophage cells isolated from blood in culture – exposed to BG from cereal. | In vitro, human macro-
phage cells exposed to
highly purified BG | Barley beta-glucan
treated culture showed a 6
fold increase in
macrophage cells | | 15 | Leatherhead Res
2007 Leatherhead UK
Prebiotic Model | Study of prebiotic fibers
to deterrmine
fermentation, SCFA, and
functionality | Prebiotic fibers digested
and fermented in
digestive model Alamo | Human digestive
simulation model testing
a broad array of prebiotic
fibers | Barley Balance was gradually fermented ↑ bifidobacteria ↑ butyric acid | | 16 | Snart
2006 – U Alberta Canada
Rats | Study effect of high
viscosity barley beta-
glucan on Lacto-bacilli in
rat cecum | Rats fed casein based diet
with 1) barley flour, 2)
oat flour, 3) cellulose, 4)
high beta-glucan or 5)
control | Random, placebo
controlled study using
pregnant rats and their
offspring, 35 days | Rats fed high viscosity
beta-glucan diet had
significantly more
Lactobacillus cells. | | 17 | Behall
2004 USDA HNL U.S.
18 Adult Males | Effect of barley beta-
glucan on lipid risk
factors for cardio-
vascular disease | Subjects consumed trial diets with 0, +3g, & +6g barley soluble fiber + NCEP Step 1 diet - | 2 wks on Step 1 diet;
crossover Latin Square
design; 15 weeks | Result for 3g, 6g BG
↓ 10.8%, ↓ 16.6% TC
↓ 16.6%, ↓ 23.8% LDL
↑ 3.7%, ↑ 7.3% HDL | | 18 | Behall
2004 USDA HNL U.S.
7 M, 9 F, 9 F | Effect of barley beta-
glucan on lipid risk
factors for cardio-
vascular disease | Subject consumed trial diets with 0, +3g, & +6g barley soluble fiber + NCEP Step 1 diet – 7 males, 9 pre-meno-pause & 9 post menopause F | 2 wks on Step 1 diet;
crossover Latin Square
design; 15 weeks | Result for 3g & 6 g BG
↓ 9%, ↓10% TC
↓ 13.8%, ↓ 17.4% LDL | | 19 | Kim
2006 USDA HNL U.S.
19 Adult M/F | Effect of barley rich in
beta-glucan on short term
satiety and glycemic
response | Overweight subjects
consumed meals (cereal +
yogurt) made with whole
grain with 0g, 1 g and 2 g
of BG & a glucose
control | Randomized, placebo
controlled study with
women and men | Results for 2 g BG
women - ↓glucose,
↑satiety men
⇔glucose, satiety | | | Reference | Study Objective | Intervention | Methods | Results | |----|--|---|---|---|--| | 20 | Talati
2009 U Connecticut US
Review | Effect of barley fiber (BG) on serum lipids from 8 clinical trials | Subjects ranged from 10
to 155 in number – barley
BG consumed as
food/beverage | Study of 8 randomized controlled trials of 4-12 weeks with lipid tests | ↓ 13.4 mg/dl TC mean
↓ 10 mg/dl LDL mean
↓ 11.8 mg/dl TG mean | | 21 | Chilo
2011 Oxford B U.K.
9 Adults | Analysis of B-glucan extracts as source of polyphenols and antioxidants | Chemical evaluation of
polyphenols and anti-
oxidants in barley
fractions, for reducing
free radicals | Acetone, methanol,
acidified methanol/H2O
ethanol extractions | Barley Balance anti-
oxidants and poly-
phenols – 81% free
radical reducing power | | 22 | Rodanelli
2011 U Pavia Italy
24 M Adults | Effect of barley beta-
glucan on lipid risk
factors for cardio-
vascular disease | Subjects (Mean age 50.3 + 5.3 yrs) consumed foods with or without 7% barley BG soluble fiber, or rice bran + NCEP Step 1 diet lead in | 3 wks on Step 1 diet;
crossover Latin Square
design; 14 weeks, blood
draws at 0,21,49, 70 and
98 days | Barley Balance BG
↓8.6% Avg LDL Chol
↓5.0% Avg Total Chol
↓= 0.33 mmol/l in LDL | | 23 | Tada
2009 TokyoU, Japan
macrophage cells | Effect of barley beta-
glucan on dectin-1
receptor – activates
immune response | Barley beta-glucan tested
with human macrophage
cell lines to determine
cytokine production | In vitro macrophage cells
exposed to barley beta-
glucan – NF-kB
activation | Immunostimulative
effects of barley beta-
glucan may be exerted via
dectin-1 receptor | | 24 | Tiwari
2011 – Ireland, Dublin
Meta-analysis | Meta-analysis of 126
selected studies of cereal
beta-glucans on blood
lipids and glucose | Meta-analysis examined
126 clinical studies of oat
and/or barley beta-
glucans on key health
parameters. | Statistical analysis of the results of trials | Meta-analysis showed
↓ of 0.60 mmol/l TC
↓ of 0.66 mmol/l LDL
↓ of 0.04 mmol/l TAG | | 25 | Thondre, Henry
2010 – UK, Oxford
Laboratory analysis | Analysis of B-glucan extracts as source of polyphenols and antioxidants | Chemical evaluation of polyphenols and anti-oxidants in barley fractions, for reducing free radicals | Acetone, methanol,
acidified methanol/H2O
ethanol extractions | Barley Balance anti-
oxidants and poly-
phenols – 81% free
radical reducing power |